
www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 31

SECURITY

Building an Internet Security Feeds Service
J O H N K R I S T O F F

I produce a set of threat intelligence security feeds compiled from
un solicited communications to a distributed network of Internet sys-
tems. The umbrella platform for the project has a home at DataPlane.

org where pipe-delimited text-based data feeds are freely available for non-
commercial use. Read on for a behind-the-scenes look at how a mix of open
source software, leased Internet hosts, and a dash of system administration
deliver security feed data to some well-known and widely relied upon secu-
rity projects and organizations.

Not long ago I proposed an antivirus programming-related idea for a class research project
as part of my graduate course work. My professor felt “virus checkers are [not] an effective
mechanism, because they are backward looking (at past history).” Presumably other types
of threat intelligence systems that construct lists from observed, malicious activity associ-
ated with IP addresses, URLs, and domain names would be summarily dismissed along a
consistent line of thinking.

My operational friends might mock a sneer and mouth “ivory tower, sheesh” under their
breath at the very suggestion of their ineffectiveness. While there is an appeal to the idea that
these sorts of approaches to security protection are discouragingly insufficient and futile,
the use of threat data learned from past events is relied upon by many as a part of their secu-
rity strategy. Whatever you believe about historical data for mitigation, threat intelligence in
the form of black lists is widely used and can fetch premium prices when the data is unique,
comprehensive, and reliable.

System Overview
The core components of the DataPlane.org security feeds are made up of three distinct
subsystems as depicted in Figure 1. A set of sensor nodes collect unsolicited communications
and relay logs of activity back to a central collection and processing system. The central col-
lector stores events in raw log files and extracts fields of interest for insertion into a master
database. Periodically, the database is scanned for recent suspicious activity seen by sensor
nodes, which is extracted and pushed to a website for public consumption.

Producing security feed data would be nothing without a source from which to derive insight.
How does one go about compiling source data? There are essentially three ways. One way
is to get it from someone else. This is surprisingly very common in the security community.
People and organizations share, sell, barter, and trade raw data all the time. If you ever com-
pare threat intelligence between providers, do not be surprised to see overlap. Sometimes
vendors produce the same intel independently, but when you see redundancy they are just as
likely if not more so to have obtained raw data from a common original source.

The second way to obtain threat intelligence data is to actively seek it out. This may come
from active monitoring, probing, data capture, crawling, and so forth. Obtaining data this
way is often how one threat intelligence provider differentiates itself from another, since

John is a Network Architect at
DePaul University’s Information
Services division and an adjunct
faculty member at DePaul’s
College of Computing and

Digital Media. He is also enrolled as a PhD
student in computer science at the University
of Illinois Chicago. John’s primary career
interests, experience, and expertise are in
Internet infrastructure, Internet measurement,
and internetwork security. John is or has been
associated with a number of organizations
and projects in associated fields of research
and technology, some of which include DNS-
OARC, IETF, FIRST, Internet2, NANOG, and
REN-ISAC. jtk@depaul.edu

32  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
Building an Internet Security Feeds Service

these methods are often distinctly proprietary and unknown to
others. This can also be the most costly and least robust approach.
As targets of data collection activities change, move, react, or go
away, data gathering processes must adapt else the end product
may prove untrustworthy or absent of any insight at all.

The third way, a passive approach, is the easiest and cheapest,
but it is not without limitations. Passive data collection is when
you let the data come to you, from a honeypot or darknet monitor,
for instance. The security feeds from the DataPlane.org project
use a type of passive approach. DataPlane.org sensors mimic real
applications, but they never allow access beyond simple unau-
thenticated application requests nor allow access to the system
beyond an authentication phase.

I’ve had a fair amount of experience designing and compiling
security feeds for nonprofit and commercial use. A few years
ago I decided to run my own independent, free service for the
community. Why do I do it? I can afford it, but most importantly
because it pays dividends in subtle ways. For example, since I am
also a PhD student, I can leverage the DataPlane.org platform
for research ideas and data measurement experiments. Running
DataPlane.org also gives me a platform with which to remain in
the good graces of the security community. If nothing else, the
security community is largely built upon reputation and trust.
I’ve recently had offers of support and kudos from an array of
benefactors. There is some non-zero amount of street cred that
helps ingratiate myself with others I might not otherwise have
had a chance to please.

Sensors
One drawback to a sensor network as used by DataPlane.org
stems from what it does not or cannot see: targeted attacks,
for example. It will fail to see threats that simply never cross
its paths. My aim with the DataPlane.org project is to obtain a
reasonably broad, sampled view of undirected Internet threats
at diverse geographic locations (both from a physical location
and an Internet routing perspective). Passive monitoring is of
almost no value in IPv6 because of the sheer size of the address
space. I focus on IPv4 networks with all the limitations this
implies.

At recent count, the DataPlane.org project has approximately
100 sensor systems dispersed around the globe on six continents
and at least one IP address in roughly 1/3 of all routable IPv4 /8
prefixes. While this isn’t the world’s biggest, most diverse, dis-
tributed network of systems, it might be one of the larger ones
of this type run by a single individual.

This may lead to an obvious question. How much does this infra-
structure cost? Before answering, let’s just briefly consider how
the network is not constructed.

I’ve been involved in similar projects in the past where people
or organizations donate a sensor or threat intelligence data for
the good of the project. While this can be a source of tremendous
data, the reliability of the underlying source infrastructure is
frequently a problem. Processes mysteriously stop, systems go
down, or the friend at the organization who provided access to
the raw data has left the organization and now no one left knows
you or is motivated to fix a problem.

An approach used by many reasonably well-funded research
groups such as CAIDA and RIPE is to send hosting volunteers
a disposable system that can be plugged in, turned on, and then
remotely managed with minimal additional supervision from
host networks. These include the CAIDA Ark project (http://
www.caida.org/projects/ark/) and the RIPE Atlas project
(https://atlas.ripe.net/). These systems, too, can only gather data
to which they are exposed, but at least in this scenario the only
worry is the availability of power and connectivity. However,
acquiring, provisioning, and delivering more than a handful of
sensors to those who agree to host them may be cost-prohibitive
for anyone operating on a tight budget.

For the DataPlane.org sensor network, I’ve opted to lease Inter-
net nodes, usually from low-end virtual machine hosting provid-
ers. Two popular places to find low-cost hosting providers are
https://www.webhostingtalk.com and https://www.lowendtalk
.com. Prices vary but typically range from approximately $15
(US) to $60 per year for a minimally sized VM with one public
IPv4 address.

I’ve built the network perhaps a little larger than it really needs
to be with a little over 100 sensors, and my total cost is approxi-
mately $3000 per year. Luckily, the cost of running the Data-
Plane.org project is a luxury I can afford to fund myself. I plan to
continue to do so as long as I’m gainfully employed and as long
as it provides a value to myself and the community. More modest
sensor networks could be set up for significantly less money.

One of the biggest challenges for the DataPlane.org project isn’t
so technical. Hosting providers come, go, get bought out, and
change their infrastructure. Managing hosting provider dynamics
accounts for most of the time I spend on the project. If you’d like to

Figure 1: DataPlane.org security feeds system overview

http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
https://atlas.ripe.net/
https://www.webhostingtalk.com
https://www.lowendtalk.com
https://www.lowendtalk.com

www.usenix.org FA L L 20 1 8 VO L . 4 3 , N O. 3 33

SECURITY
Building an Internet Security Feeds Service

build your own network of leased systems, I can offer you a handful
of tips, summarized below, having dealt with dozens of providers:

◆◆ Historicity: Consider the history of the provider. Beware of
fly-by-night operations.

◆◆ Reputation: Many low-cost providers have mixed reviews,
but the handful that consistently receive low marks probably
deserve them for a reason.

◆◆ Payment option: PayPal is generally the safest for the custom-
er. Do you really want to entrust your credit card information to
providers with such slim margins? On a related note, I recom-
mend avoiding any provider who wants a scan of government-
issued identification. They don’t need it, and you don’t want
them to have it.

◆◆ Support: You might not expect platinum service, but you
should expect to receive a response to an email within one or
two business days. An easy way to evaluate the liveliness of a
provider is to send them a low-priority inquiry and see how
they respond, if they do.

◆◆ Professionalism: This attribute applies to both the provider
and customer. Customers should want a provider who is cour-
teous in public and when interacting with customers. Likewise,
the customer should be mindful of low-cost provider limitations,
adjust expectations accordingly, and interact appropriately.

Setting up a DataPlane.org sensor consists of three basic steps:
installing the OS, deploying the sensor applications, and config-
uring logging. I standardize on a minimal Debian stable distro.
It is lightweight for low-powered VMs, easy to maintain, and
almost always an option with every provider. My sensors require
very little disk, memory, or network bandwidth. I can get away
with just 256 MB of RAM, and was running an older system with
just 64 MB not long ago. The DataPlane.org sensor configuration
places only modest demands on system resources.

A sensor build includes multiple common network application
listeners with which to produce threat intelligence data. These
include DNS, SIP, SSH, and VNC, for example. For some applica-
tions, such as DNS and SSH, I use slightly customized versions
of well-known implementations (e.g., BIND and OpenSSH,
respectively). The SIP and VNC listeners are custom daemons
specifically written for the DataPlane.org project rather than full
protocol implementations. The custom daemons support enough
of the base protocol to interpret unsolicited requests and log
application-specific detail. These daemons can be found in the
DataPlane.org GitHub repository (https://github.com/dataplane).

The final core capability of the sensor is to log all the desired
monitored applications with syslog. Sensor applications of inter-
est must log sufficient detail to be useful for threat intelligence
purposes. For sensor applications like DNS, SIP, SSH, and VNC,
this should include not only the source IP address responsible for

generating the event, but also an NTP-synchronized timestamp
set to UTC and a source port when transport protocols like TCP
or UDP are involved. A source port helps networks doing net-
work address translation correlate a specific event to an internal
IP address. The syslog daemon should forward events of interest
to a central collector. How DataPlane.org does this is detailed in
the next section.

Central Collector and Processor
Within many networks, syslog is used to send locally generated
logs from a host, daemon, or application to a remote collector
for safekeeping and later analysis. The DataPlane.org sensor
network is little more than a distributed set of syslog clients
and a syslog server. However, because sensors are distributed
globally on various types of hosting networks, I wanted to ensure
some amount of log message reliability and privacy. Therefore
all logs sent from sensors to the central collector are over a TLS
connection. The sensor is configured with the central collector
certificate, and likewise the central collector has a copy of the
sensor certificate, providing some assurance each end is known
to the other.

I prefer using syslog-ng as the syslog daemon at both the collec-
tor and sensor even though most modern Linux systems have
migrated to rsyslog by default. The open source version of sys-
log-ng is reliably robust and includes some features I’ve grown
accustomed to.

The central collector logs everything from each sensor system
to a daily log file based on the unique IP address of the sensor
system. The DataPlane.org project receives anywhere from a
few KB to a few MB per day per sensor depending on how many
public IPv4 addresses are active on the sensor.

I leverage two syslog-ng features to interpret received syslog
messages and extract desired insight from them for insertion
into a database. First, I make use of the pattern database. This
is essentially an elaborate regular expression capability applied
to syslog messages. Generally, syslog messages of interest have
some structure or pattern to them, even if they are essentially
text. When you know this structure, you can use the pattern
database feature of syslog-ng to capture fields in a log message
and then refer to them later in the processing chain as you might
with back references in many scripting languages. Working with
the pattern database feature requires close attention to detail
and will take some getting used to, but once mastered it can
prove quite powerful. The following is a very simple example to
match on an sshd log message capturing the incoming source IP
address:

<pattern>Connection closed by @IPvANY:SSH.SADDR@</pattern>

This pattern will match not only the connection formatting
shown, but will capture the IP address (IPv4 or IPv6) of the host

https://github.com/dataplane
IPvANY:SSH.SADDR@</pattern

34  FA L L 20 1 8 VO L . 4 3 , N O. 3 www.usenix.org

SECURITY
Building an Internet Security Feeds Service

hitting the sensor. syslog-ng will store the IP address value in a
variable named SSH.ADDR, which can be referenced later in the
syslog-ng configuration. I make extensive use of the pattern
database feature to capture various attributes of log messages,
including source IP addresses, source ports, and application-
specific detail. As log messages arrive and matches are made,
the second syslog-ng feature I leverage is the ability to insert a
processed version of a pattern-matched message into a database
table. Once the pattern matches are defined, it is simply a mat-
ter of associating a matching pattern with a syslog-ng database
destination. The following code block is an abbreviated syslog-ng
configuration to demonstrate this concept with a PostgreSQL
database:

parser p_patterndb {

 db_parser(file(”/etc/syslog−ng/patterndb.d/example.xml”));

};

destination db_ssh{

 sql(type (pgsql) host(”127.0.0.1”) port(”5432”)

 database(”example”) table(”ssh”) columns (”logaddr”,

 ”stamp”, ”saddr”,) values(”${SOURCEIP}”, ”${ISODATE}”,

 ”${SSH.SADDR}”)

);

};

filter f_ssh{

 match(

 ”0123456789abcdef” value(”.classifier. rule id”)

 type(”string”)

);

};

log{

 parser(p_patterndb); filter(f_ssh);

 destination(db_ssh);

};

Publication
The final core component of the security feeds system is to
publish the final output to the community. This is a two-step
process. The first step is to compile a feed from a data set in the
database. The second is to push the feed to the DataPlane.org
website for public dissemination. I’ve found an hourly update
of the data feeds is generally sufficient for most users. I extract
the most recent week’s worth of events per feed category and
generate a simple pipe-delimited text file that contains one event
entry per line as defined in the commented section of the feed
file. Intelligence threat providers or other interested parties
can periodically pull these text-based security feeds from my
website and process them further. I am currently in the process
of making the security feed data available in real-time to users
of the Security Information Exchange (SIE) platform run by
Farsight Security (https://www.farsightsecurity.com/solutions
/security-information-exchange/).

Conclusion
A number of open source projects, commercial providers, and
incident response organizations make use of the security feeds
DataPlane.org produces. I’ve been told that these security feeds
are among the best and most reliably robust public set of feeds
available. This seems somewhat surprising, because today I’m
only producing feeds for a handful of basic network services.
There are plenty more I could and want to do. The bad news is
that I have not spent much time producing more varied secu-
rity feeds for the past year since I started my PhD work. The
good news is that I haven’t had to actually do much to keep this
security feeds system running as it largely runs itself. Additional
detail about the implementation, including some source code
for how many parts of the system are set up, can be found at the
DataPlane.org GitHub project page. I invite you to take a look,
contribute, or adapt what I have done to your own projects.

Perhaps one day, decades from now, the early 21st century may
become known as the Internet’s gangster era, a heyday where
botnets, phishing emails, and DDoS attacks were commonplace.
Awaiting that day implies an optimism that suggests we are now
living in what will eventually be judged to be “simpler times.”
Whether or not this comes to bear, it seems plausible that, unlike
1920s America, the Internet do-gooders may be better remem-
bered in the coming story than those G-men of yesteryear.
Thanks to the proliferation of excellent, freely available soft-
ware, sharing of insight between people and organizations, and
the motivation to prevent the spread of malicious activity, few
misdeeds or criminals run rampant for long.

The story, our story, is currently in progress. This article
describes one modest approach to support a cast of characters
helping to limit the spread of abuse on the Internet through the
distillation and dissemination of security feeds. One day, we may
all consider it “backward” and not worth the effort. Until that
day comes, we hack.

https://www.farsightsecurity.com/solutions/security-information-exchange/
https://www.farsightsecurity.com/solutions/security-information-exchange/

